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Multi-Transition Systems:
A theory for neural spatial navigation

Nicolai Waniek

Abstract—Spatial navigation is fundamental for animals and
is attributed to place and grid cells in the rodent brain. Believed
to perform path integration or localization, the true objective of
grid cells, their hexagonal fields, and especially their discrete
scales remain insufficiently understood. Here it is proposed
that grid cells encode spatial transitions. First, a model for
dendritic computation in grid cells is presented. A network of
competitive cells quickly develops positive gridness and realigns
the orientation of all cells over time. Next, a scale-space model
is introduced for which the optimal scale-increment is shown
to be

√
2. It improves behaviorally questionable run-times of a

single scale significantly by transition look-ahead. Then, a novel
formal theory for sequences and transitions is provided to proof
optimality of hexagonal transition encoders in Euclidean space.
Finally the suggested purpose and results are discussed, testable
predictions stated, and relevant connections to computer science
noted.

Index Terms—grid cells, place cells, spatial navigation, transi-
tion systems, scale-space

I. INTRODUCTION

Decades of research uncovered neurons which are relevant
for navigation and express correlation with spatial information.
The probably most prominent ones are Head Direction (HD)
cells, Place Cells (PCs), and Grid Cells (GCs) [1], all of which
can be found in the Hippocampal Formation (HF) [2]. Their
combined representations are thought to form a map of the
surrounding environment [1, 3], just as anticipated by Edward
Tolman in his proposal of a cognitive map in 1948 [4].

HD cells show preferential tuning towards directions [5, 6, 7].
The firing rate of an HD cell is maximal when the animal
faces the neuron’s preferred direction [8, 9]. Thus, a network
of HD cells can be considered to resemble a compass [10].

A PC is active only when an animal is in one particular
or a few randomly distributed locations of the environment,
called place fields [11, 12, 13, 14]. PCs are pyramidal neurons
and were discovered in the areas Cornu Ammonis 3 (CA3)
and Cornu Ammonis 1 (CA1) of the Hippocampus [15].
Changes of place fields after environmental modifications
during experiments suggest that they are influenced by visually
perceived geometrical information [16, 17, 18]. Furthermore,
PCs were found to integrate non-visual afferents [19, 20]. Due
to the stability of place fields over time, PCs are considered to
memorize spatial locations [21]. In addition, they were found
to be crucial for goal-directed navigation [22, 23, 24, 25, 26].

PCs are subject to certain temporal processes and effects.
Consolidation of spatial and episodic memories appears to
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happen during Sharp Waves and Ripples (SPW-R) [27, 28,
29, 30]. These are events in which temporally compressed
sequences of PCs are re-played in the order in which they
were perceived. In addition, a recent study found pre-play
activity of PCs in awake but stationary animals [31]. The study
reported that sequences of PCs from the current location of
an animal to a target location were pre-played in the order in
which they were likely to be walked along afterwards, hinting
to a path planning operation. Other studies reported PC activity
in running animals which is temporally relative to Theta, an
oscillation in the Local Field Potential (LFP) at 4 – 10 Hz[32],
termed Theta Phase Precession (TPP) [33, 34]. Theta is believed
to either provide or be the observable effect of synchronization
of neural activity within and beyond the Hippocampus, thereby
improving memory consolidation [35]. Synchronization with
extra-hippocampal areas such as the Pre-Frontal Cortex (PFC)
is necessary, for instance, for decision processes and spatial
navigation [36, 37]. During TPP, the PC which corresponds
to the current location of the animal is active at the peak
of Theta. In addition, several future and past cells spike in
order of the spatial location of their place fields during the
downward and upward slope, respectively, of the oscillation.
Some authors suggest that TPP provides a mechanism for
temporal buffering [38, 39].

GCs are stellate cells of the rodent Medial Entorhinal Cortex
(mEC) and one synapse upstream of PCs [40]. After their initial
discovery in 2005, they were since also discovered in other
species, e.g. mice [41] and bats [42, 43]. Opposed to PCs, their
spatial correlate is expressed as multiple fields of activity with
respect to an environment [44, 45]. Curiously, the grid fields
of a single GC arrange in a near-perfect hexagonal tesselation
of the environment [40]. Grid fields can be characterized
according to their relative phase, orientation, and size within
an environment [45]. Commonly, the quality of grid fields
is numerically assessed by the gridness score [46], a value
which is determined by auto-correlating all responses of a GC
within an environment and subsequently measuring how well
peaks in the auto-correlation map are distributed hexagonally.
It was discovered that grid field sizes increase in discrete
steps along the dorsoventral axis, thereby forming several
scales of representation [47]. Remarkably, the scales were
reported to increase approximately by the factor

√
2 within

and even across animals. Cells of the same scale are said to
be part of one grid module, and the responses of one module
densely cover the entire environment [40, 47]. Apparently,
grid fields are influenced by the geometry of the surrounding
environment [48, 49, 50, 51, 52], and a shearing effect was
observed in regularly bounded environments[53]. Although
GCs need excitatory afferents from the Hippocampus [54]
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and reportedly depend on Theta in the rodent mEC [55],
they were also found to require converging inputs from
visual pathways [56]. Furthermore, a somewhat overlooked
statistical analysis reported that GCs tend to fire in correlation
with an animal’s head direction and not with its movement
direction [57]. The function of the hexagonal pattern in one and
multiple scales is believed to provide a metric representation
of space [44].

Conclusively, the HF is important for spatial information
processing [11, 22, 58, 59]. In addition, it takes a critical
role in the formation and retrieval of episodic memories [59,
60, 61, 62, 63, 64, 65]. It is structurally organized to form
several loops of information processing, shows intricate local
synaptic circuits of both excitatory and inhibitory neurons, and
expresses significant amounts of recurrent connectivity [64,
66, 67, 68]. In particular, the inter-connectivity suggests that
areas CA3 and CA1 form an auto- and hetero-associative
memory, respectively [69, 70, 71, 72, 73, 74]. While auto-
association is suitable for storage and retrieval of patterns
even when presented only with partial information, hetero-
association allows storage of mappings from inputs to target
states [75, 76, 77]. In combination, they can be used to store
sequences of data [78].

A. Overview of existing models and theoretical investigations

The origin of the hexagonal grid fields as well as their
discretized field sizes are discussed controversially. Several
models were developed to explain the peculiar arrangement
and produce phenomenologically similar responses to real
cells [79, 80, 81]. In Continuous Attractor Neural Network
(CAN) models, the hexagonal fields appear due to temporal
dynamics and recurrent lateral connectivity [82, 83, 84].
Recently, indirect evidence in favor of CAN models was
presented by [85]. In Oscillatory Interference (OI) models,
the hexagonal patterns emerge due to integration of oscillatory
afferents which depend on the Theta rhythm [86]. Although
evidence suggests that Theta is required for the stable formation
of GCss [87], the necessary accuracy of the oscillation in OI
models was not reported so far. Other models use spatially
modulated input, e.g. in form of PC activity, to drive a self-
organizing process for the hexagonal arrangement [23, 88, 89].
They are supported by the observation that GCs require driving
input from the Hippocampus [54].

Theoretical analyses found that Bayesian inference can be
used to decode GC activity of multiple scales for the purpose of
localization [90]. Although this encoding outperforms PCs[91],
it is often assumed that the combination of several scales of GCs
converge to form PCs [41, 92]. Another study demonstrated that
a scale increment of

√
2 ideally covers a two dimensional input

space when used for localization [93]. Other investigations used
the hexagonal pattern for path integration [83, 94]. Furthermore,
it was shown that the hexagonal encoding lattice can perform
error correction during localization [95].

B. Motivating questions

The theoretical investigations and existing models provoke
several concerns. First, a redundant encoding for localization

in both GCs and PC is unlikely due to energetically expensive
maintenance of neural networks [96], especially when local-
ization in GCs outperforms PCs[91]. Numerous evidence is in
favor that PCs perform localization [3, 12, 22, 97], rendering
the purpose of GCs under-determined. Second, the hexagonal
encoding yields ambiguities when used as a path integration
mechanism, and requires stabilization to prevent or reduce drift
due to noise in real-world scenarios [98]. Other integration
schemes such as a homing vector or a pedometer appear more
likely. Third, only few GCs models address temporal aspects of
spatial information [99]. However, the Hippocampus is known
to form a basis for episodic memory [60, 62, 63, 100], and
GCs appear to require episodic data [101, 102, 103].

The goal of this work is to address these concerns. Given
that the Hippocampus and Entorhinal Cortex (EC) are required
for goal-directed navigation [104, 105], it is proposed that GCs
efficiently encode spatial transitions in sequences of locations.

C. Organization and brief summary
The paper is organized as follows. First, a model for self-

organizing GCs is presented in which each GC learns as many
valid transitions as possible via dendritic computations. The
model is evaluated in simulations of competitive, recurrently
coupled GCs. Grid fields emerge quickly and remain stable
over long simulation times.

Next, transition encoding is examined in the light of
computational performance and behavioral relevance. Here,
a novel scale-space model of GCs is proposed to achieve
behaviorally significant run-times. In particular, it is first shown
theoretically that the optimal increment across scales is

√
2.

Then, it is demonstrated that multiple scales improve run-
times exponentially in a simplified model. To form the scale-
space representation, temporal buffering of spatial locations is
required.

Subsequently, the formal theory for transition encoding
on which the self-organizing model is based is presented.
Here, goal-directed navigation is examined from a logical
perspective in which sequences of locations and transitions are
formalized mathematically. Several constraints are introduced
which are necessary to form consistent sequences. To logically
examine transition encoding, inspiration was taken from the
analysis of time in distributed computing systems [106],
and from approaches to understand and model causality in
theoretical computer science [107]. Furthermore, a notation for
transitions is used which is based on Communicating Sequential
Processes (CSP) [108]. The block concludes with proving that
a hexagonal arrangement of transition encoders is optimal for
two dimensional Euclidean space with tools and methods from
graph theory.

Finally, the results are discussed in detail. They are examined
with respect to influential related work and biological findings,
testable predictions are made, and links to other areas of
research are established.

II. SELF-ORGANIZING GRID CELLS FOR TRANSITION
ENCODING

A formal theory for sequences and transition encoding is
introduced further below. Briefly summarized, the results are as
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follows. The theory defines transition bundles which encode as
many transitions from one symbol to another. Thereby symbols
and bundles can be used to generate sequences, for instance
for goal-directed navigation. To generate valid sequences, a
bundle cannot associate to starting points if it already encodes
a transition leading to this point. Given the assumption of a
suitable sensory input, it is shown that the optimal distribution
of bundles to minimize their number is hexagonal in Euclidean
space, and that the minimal number is three.

The results of the formal theory are now used to derive
a biologically plausible model of self-organizing GCs. Each
cell corresponds to a transition bundle that encodes transitions
between spatial locations. The necessary behavior of each cell,
i.e. associating with as many presynaptic states as possible, is
modeled by dendritic computation in form of multiple dendritic
spines, or short dendrites.

However, a single cell must decorrelate from locations to
which one of its memorized transitions leads. In Euclidean
space, the target region of a transition is a volume around the
current location. Conceptually this is modeled as receptive field
dynamics with on-center and off-surround regions, the first
corresponding to the start location of a transition and the latter
to the target region. The on-center off-surround receptive field
is expressed by each dendrite individually. Figure 1a illustrates
the dendritic tree of a single cell as well as the preference of
cells to correlate with multiple inputs in two dimensions.

Due to the decorrelation, a single cell is unable to capture
transitions from arbitrary locations in the environment. Any
transition which starts at a location from which the cell
decorrelated has to be covered by another cell. In concordance
with the theoretical results presented further below, the system
is modeled as a minimal network of Ng = 3 cells, illustrated
in Figure 1b. To preserve uniqueness of transitions and their
corresponding starting locations, the interactions between cells
have to be competitive.

A. Assumptions and model specification
Each GC samples an input space with Nd dendrites. Inter-

actions between a GC and presynaptic afferents are modeled
as follows, based on several assumption. For instance, it is
assumed that any location in the experimental environment
induces a unique sensory representation. A likely candidate for
this purpose is the Boundary Vector (BV) space [18]. However,
coordinates are used to reduce the complexity of the model.

The location x of the animal is thought to evoke spikes
from several presynaptic neurons with overlapping tuning
curves. The spikes are integrated by dendrites i which encode
locations not further apart than σ1, i.e. |xi − x| ≤ σ1. The
totality of these dendrites, denoted as the set Bn,t for cell
n at simulation time t, is assumed to be sufficient to drive
the GC to its spiking threshold. In addition, dendrites j
which encode nearby locations are expected to generate an
excitatory post-synaptic potential shortly after the GC fired, i.e.
σ1 < |xj − x| ≤ σ2 and denoted Cn,t. In the simulations, the
temporal integration of presynaptic spikes relative to the spike
time of a GC is collapsed into one singular time-step. The
simplification can be understood as a binarization of Spike-
Timing Dependent Plasticity (STDP) dynamics. Consequently,

Figure 1: Conceptual overview of the model and detailed view
of the dendritic organization. (a) A single cell shows preference
to associate with as many inputs as possible, indicated by black
arrows with a + sign. Transition constraints are expressed as
dendritic computation in form of on-center off-surround fields,
indicated by small circles and arrows with − and + signs. (b)
To cover an entire input space, at least three cells are required
which organize their fields due to competitive dynamics. (c) The
location of the animal induces a singular response (red circle)
in a spatially modulated input space. Specifically, coordinates
are used to during simulations. The dendritic tree of each grid
cell covers the entire input space, and dendrites are organized
on a regular lattice according to the image (indicated by little
boxes and gray lines). Each dendrite expresses a receptive
field of given certain size (circles with black center), which
may overlap with neighboring dendrites. Therefore, multiple
dendrites may get activated (black small boxes) for a single
stimulus. All other dendrites remain silent (blue lines).

the set of all dendrites which receive stimulation at time step t
for cell n is the set Dn,t = Bn,t∪Cn,t, and corresponds to the
formation of an on-center and off-surround receptive field. The
on-center represents the location at which a transition starts,
and the off-center region the target area to which a transition
leads.

Due to the correspondence of the input space with coordi-
nates, each dendrite i can be identified by a coordinate xi.
The dendrites are organized on a regular lattice, and each
dendrite i of cell n stores a weight wn,i ∈ [0, 1] that indicates
the dendrite’s probability to associate with the corresponding
input. The entire vector of weights is denoted as wn. For
the simulations presented below, the dendritic tree reduces to
a two dimensional sheet of weights which covers the entire
input space. The processing of presynaptic afferents, dendritic
computation, and dendritic organization of a single cell are
illustrated in Figure 1c.

Activation an of a single cell n is computed according to
Equation 1 as the weighted sum over all dendrites Bn,t which
receive stimulation at time-step t. Weighting only appears on
the dendritic side, i.e. presynaptic activity is considered to be
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binary.

an(t) =

∑
i∈Bn,t

wn,i,t

|Bn,t|
. (1)

Each cell maximizes the number of locations to which it is
associated. This is formalized as a function Ln(wn), specified
in Equation 2, which tells the dendritic load of a cell. It can
be understood as a diffusive eagerness of each dendrite to
associate with arbitrary presynaptic inputs.

Ln(t) =
−1

NgNd

Nd∑
i=1

(1− wn,i,t)
2 . (2)

Furthermore, a network of Ng cells has to minimize co-
activation K, modeled according to Equation 3.

Kn(t) =
1

2(Ng − 1)

∑
m 6=n

am(Bm,t)a
2
n(Bn,t) . (3)

In addition to diffusive dendritic load, each cell has to express
specificity for transitions. A cell which associates with a certain
presynaptic state has to dissociate from nearby or similar states.
Clearly this information is present in the on-center and off-
surround dynamics of the dendritic computation described
above. The contributed errors for the on- and off-portions are
denoted E+(t) and E−(t), respectively. Intuitively, the error
terms can be understood as follows. Consider the term E−(t).
Any dendrite i which synapses with erroneous presynaptic
input, i.e. a state to which a transition that is encoded by the
cell leads to, contributes an error proportional to wn,i,t. The
errors are minimized according to the derivatives specified in
Equations 4 and 5, respectively.

∂

∂wn,k,t
E+(t) =

−4(Ng − 1)

NgNd
|Bn,t|wn,k,t (4)

∂

∂wn,k,t
E−(t) =

4(Ng − 1)

NgNd
|Cn,t|wn,k,t (5)

The derivatives are inspired by the instar learning rule [109].
Hereby, minimization depends only on wn,k,t and the total
amount of stimulated dendrites |Bn,t| and |Cn,t|. Specific cross-
talk with potentially remote dendrites wn,i,t, i 6= k, perceived
to be biologically unlikely, is thereby avoided.

Summarized, a GC is characterized by the error function
Fn of Equation 6.

Fn(t) = Ln(t) +Kn(t) + E+
n (t) + E−n (t) . (6)

The error function can be derived with respect to a weight
wn,k,t to determine a gradient descent learning rule to minimize
the error over time, shown in Equation 7.

∂

∂wn,k,t
F (t) = − 2

NgNd
(1− wn,k)

+
1

Ng − 1

∑
m 6=n

am(Bm,t)an(Bn,t)

+
∂

∂wn,k,t
E+(t) +

∂

∂wn,k,t
E−(t) (7)

Changes to dendritic weights according to Equation 7 are
subject to global winner-take-all and local activation mecha-
nisms. All cells perform weight updates with respect to Ln(t)
and Kn(t), however limited to dendrites Dt. Furthermore, only
the most active GC, i.e. if n = arg maxm am(t), receives non-
zero gradients E+ and E−. The gradients E+ and E− are only
applied to corresponding dendritic weights, i.e. only dendrites
of Bm,t receive a gradient for E+ and only dendrites of Cm,t

a gradient for E−. Thereby, changes are local to dendrites
which perceived presynaptic activity and proportional to their
individual weights. Subsequently, the update of a weight wn,k,t

is modulated non-linearily. Finally, all weights are rectified,
i.e. weights are clamped from below to zero, indicated by the
bracket notation [·]+. Conclusively, a weight update follows
according to Equations 8, 9 and 10.

wn,k,t+1 =

[
tanh

(
wn,k,t −G(t)

)]+

(8)

G(t) =

{
η(t) ∂

∂wn,k,t
F (t), if wn,k,t ∈ Dn,t

0, otherwise
(9)

η(t) =
1

3
exp

(
− 1

savg
s2
t

)
(10)

The learning rate η(t) depends on the current speed st in
m/s of the animal as well as the average speed savg. This
dependence models increased uncertainty of perception. It
is assumed that an animal which moves at a high speed is
less likely to identify locations perfectly. Correspondingly,
the accuracy of learning transitions declines with increased
speed, expressed by a lowered learning rate. In the simulations
presented below, the average speed savg was extracted from pre-
computed trajectories. However, a moving average is expected
to yield qualitatively similar results.

B. Simulation setup and results

A dendritic weight is initialized to 1.0 with a probability of
0.1, or set to zero otherwise. Input to the model was presented
in form of the speed of the simulated animal to adjust η(t), as
well as the location to drive the presynaptic state. The simulated
animal moved throughout the environment with movement
statistics close to real recordings, extracted from recordings by
[40]. An example of a simulated trajectory as well as statistics
of the distribution of speeds and angular velocities are given
in Figure 2. The trajectories were pre-computed to extract savg.
In each simulation, the animal started in the middle of the
environment. The network model was simulated 400 times for
the minimal number of Ng = 3 cells per network, each cell
exhibiting Nd = 48 dendritic weights. Dendritic stimulation
due to presynaptic activation was governed by the parameters
σ1 = 0.10, and σ2 = 2σ1.

The gridness score of a cell was calculated without gen-
erating spikes. The value was extracted directly from the
dendritic weights. All weights wn,k ∈ [0, 1], thus they encode
a probability to spike given a certain input. Consequently, the
distribution of spikes precisely follows the dendritic weights.
The gridness score was computed according to Sargolini et
al. [46], however without previously smoothing the weight



5

Figure 2: Realistic trajectories (a) were generated by tuning
the distribution of speeds (b) as well as angular velocities (c)
to resemble real recordings.

Figure 3: Gridness scores and orientation over time for 400
simulations. (a) Gridness increases over time, the median stays
above zero already after approximately 2.5 minutes of simulated
time. The mean remains positive after about 4 minutes. (b)
Relative grid orientation errors decline over time. The first
four minutes of data were cut off to allow the cells to form
detectable peaks in their weight distributions.

maps. Furthermore, the orientation of the dendritic weights
was computed following the methods described by [40]. The
relative grid orientation error of the network was computed by
accumulating the mutual differences of orientations between
all cells.

Both, gridness scores and relative orientation errors, are
presented in Figure 3 for 400 simulations with a total simulated
duration of 180 minutes. The top row of the figure shows that
cells with a gridness score above zero appeared early in most
of the simulations. Furthermore, the bottom row demonstrates

that relative grid orientation errors declined over time.
Examples of three simulations, one with a high final average

gridness score, one with mean score, and one with low score,
are depicted in Figure 4. The figure displays the dendritic
weights of each of the neurons at several points in time during
the simulation in form of heat maps. The first column shows
the dendritic weights after a few iterations of the system and
not immediately after initialization, visible in form of slightly
increased values in the central weights, and that the weight
maps are presented as-is and were not post-processed with a
smoothing filter. Each panel contains a small inlay displaying
the gridness score of the presented weight distribution. The
emerging weights are non-binary and smooth despite the binary
presynaptic activation of the dendritic tree. In addition, the
weights at time t = 180 min indicate effects similar to recently
reported distortions such as skewing, or misalignments with
walls [53]. Analysis of these effects is left for future work,
though. The last column of Figure 4 shows the auto-correlogram
of the dendritic weights at the end of each simulation. The
detected orientation of the arrangement of weights is displayed
in form of a black bar from the central peak to the first peak
above the horizon in counter-clockwise direction.

III. A SCALE-SPACE MODEL OF GRID CELLS

The entorhinal-hippocampal loop is proposed to form a Multi-
Transition System (MTS) for both episodic sequences as well
as goal-directed navigation, and stores symbols and transition
bundles as follows. A neuron representing a spatial symbol can
be understood as a PC, hence the terms symbol and PC are
used interchangeably. Novel symbols are acquired in a neural
associative memory MΣ, episodic and actually performed
transitions are recorded as bundles in MΠ, while purely spatial
bundles are subject of MΓ. Spatially modulated afferents,
required for the recruitment of new symbols and transitions, are
represented by neural memory M∆. The interactions between
these memories are depicted in Figure 5d and focus of the
remainder of this section. The model is inspired by previous
work by [110, 111] and [112].

The system can be queried to expand the path σs  σt
by recursion. After activation of a start symbol σs in MΣ all
corresponding transitions activate in MΠ and MΓ. Recursively
this leads to activation of subsequent symbols in MΣ due to the
bi-directional connection between MΣ and the two transition
memories. Simultaneous co-activation of multiple symbols or
transitions is allowed. Hereby the system is able to expand
σs  σt into known paths in parallel until the target state σt
is activated in MΣ, or until a maximal number of recursions
is reached.

A. Multi-scale transitions and the number
√

2

Both the outlined model above as well as the ones published
by [110, 111] or [112] have a biologically significant issue.
Consider the computational and thus behavioral implications
of the recursive retrieval in the transition system for an animal
which has to travel 200 m in a straight line from a feeding
site back to its home location. The animal is equipped with
an entorhinal-hippocampal transition system for path planning
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Figure 4: Examples of grid cells at several points in time during the simulation and final auto-correlograms with indicated grid
orientation. White inlays with numerical values show gridness score of the respective weight map.
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which acquires novel spatial symbols every 20 cm. Thus, 1000
spatial symbols cover the path from start to goal, ignoring
overlapping place fields. Furthermore, assume that temporal
dynamics and delays for spike generation and propagation
consume 10 ms of time per memory. After activation of a
symbol in MΣ, recursive retrieval with the help of MΠ and
MΣ therefore requires 20 ms of time to activate a subsequent
symbol in MΣ. In total, this accumulates to 20 s of time to
query the existence of an expansion – if it exists – in which
the animal may fall victim to a roaming predator. Clearly an
acceleration technique is required.

From the perspective of computer science, symbols and
transitions stored in a transition system form an ordered list of
data. Given random access to elements, binary search is known
to demonstrate the asymptotically optimal runtime [113]. For
lists without random access, skip lists were developed [114].
The data structure builds a hierarchy of look-ahead links, often
called fast lanes, by which search is accelerated exponentially.
Given uniformly sampled elements of data, skip lists express
an immediate duality to binary search [115]. In particular,
the hierarchically structured fast-lanes exponentially decrease
the search time for a range query on discrete and equidistant
data. The look-ahead distance is governed by a factor of two,
depicted in Figure 5a. Two consecutive locations have to be
compared and combined as fast lane to form the next level of
transitions in this hierarchical approach.

How does this relate to the entorhinal-hippocampal loop? The
value represented or detected by a single real neuron depends
on its tuning curve, which is usually bell-shaped [116, 117].
Furthermore, the perception of two consecutive locations is
assumed to depend on optimally sampling an input space.
Due to a finite number of neurons to represent sensory
stimuli, it can be assumed that there is a minimal resolution
to discriminate between two (sensorily) adjacent positions,
called eigenresolution and denoted σeigen and Σeigen in the one
and multidimensional case, respectively. In other words, two
locations can be distinguished if they are at least σeigen apart
in the sensory space. For ease of comprehension, σeigen can
be understood to correspond to a distance in Euclidean metric
space, similar to the parameter σ1 used for the self-organizing
grid cell model above. Conclusively, neural afferents to GCs
are proposed to be described by an n-dimensionally normally
distributed Probability Density Function (pdf) according to
Equation 11.

G(x;µ,Σ) =
1

D
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
(11)

The pdf is parametrized by the preferred stimulus µ and tuning
width expressed by the covariance matrix Σ. The normalizer
D is specified according to D = (2π)

n/2 |Σ|1/2 .
Combining two locations to construct a transition look-

ahead requires to convolve two consecutive spatial samples,
parametrized by µ1,µ2, and denoted as Σ1, and Σ2. Combin-
ing distant locations would violate the coherency constraint
of Multi-Transition Theory (MTT), presented further below. It
can be shown that convolving two normally distributed pdfs
results in yet another normally distributed pdf with combined
mean and co-variances (see supplementary material to [118]

for details). In particular, the resulting pdf is parametrized
according to µ = µ1 +µ2 and Σ = Σ1 + Σ2. Given uniform
input sampling and symmetry, i.e. Σ1 = Σ2 = Σeigen and
Σeigen = σeigenI , it follows that the variance σ2 of a sampling
process for spatial look-ahead is σ2 = 2σeigen

2. Thereby the
integration area of a spatial sampling process doubles during
the construction of an additional scale to perform transition
look-ahead, regardless of the dimensionality of the pdf. The
convolution process and three consecutive scales are depicted
for the one-dimensional case in Figure 5b and c, respectively.

Conclusively, the radius of the spatial sampling process
ideally increases by a factor of

√
2 from the first scale to

the next. In concordance, the spatial period of transition
encoders which perform spatial sampling as part of their
dendritic computation increases by

√
2. Repeatedly applied,

the technique forms an entire stack of probabilistic look-ahead
transition encoders with a discrete scale increment by a factor
of
√

2. This is similar to the fast lanes of skip lists in the
asymptotically optimal case, however with the difference of
using probabilistic instead of discrete data.

B. Implementation details of a proof-of-principle model

The theoretical results were simulated in the following
deterministic manner as proof-of-principle. The model consists
of the four memories M∆ to represent input, MΣ to store
symbols, MΠ to record temporal transitions, and MΓ for the
storage of spatial transitions, interacting according to Figure 5d.
Each memory sacrifices biological accuracy to focus on the
effect and requirements of using and learning a scale-space
model of transition encoding.

Likewise the input to the self-organizing grid cell model
above, the memory M∆ reports the coordinate of the animal in
two dimensional space to reduce the complexity of the model.
The memories MΣ and MΠ are implemented as artificial neural
networks similar to growing neural gas [119]. MΣ associates
with presynaptic states of M∆ and thereby corresponds to
PCs, whereas MΠ records actually performed transitions from
one neuron of MΣ to another. Thus, any neuron in MΠ

associates presynaptically with a single symbol neuron of
MΣ, and recurrently connects back to all symbols in MΣ to
which transitions were detected. A novel transition neuron is
recruited in MΠ only when the corresponding symbol of MΣ

is not yet known to MΠ. Recruitment of novel neurons in MΣ

is determined by the difference between the afferent from M∆

and the value represented by the best matching unit. Given the
use of Euclidean coordinates in M∆, this is simply the distance
between the respective coordinates. In the results presented
below, recruitment of novel PCs was triggered when the best
matching unit represented a value that was displaced by at
least 10 cm from the current location of the animal.

The distribution of optimal transition bundles in memory
MΓ is predetermined to simplify the simulation. Instead of
learning the optimal distribution of the bundles similar to the
self-organizing model above, hexagonally distributed Voronoi
cells with a radius of 20 cm are used on top of the coordinate
space provided by M∆, and the scale-increment from one
scale to the next is determined by the factor

√
2. Although
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Figure 5: Skip list, scale-space model construction, overview,
and learning. (a) A skip list for discrete data is a data structure
which uses a hierarchy of fast lanes to accelerate search [114].
In the ideal case illustrated here, the hierarchy guarantees
logarithmic time, i.e. exponential speed up of retrieval, and
corresponds to search in a binary tree. For fast lane traversal,
comparison of items is required. (b) For probabilistic data
represented in a neural network, convolution of two consecutive
normally distributed probability density functions (pdf) is
required. This yields another pdf with variance increased by
factor

√
2. (c) Recursively applied this constructs a scale-

space representation. The scale space allows to compare items
across larger distances of the represented space, similar to the
comparison on fast lanes in a discrete skip list. Dashed lines
indicate off-surround areas. (d) The final model consists of the
four memories M∆, providing spatially unique information,
MΣ, storing spatial symbols or place cells, MΓ, which learns
spatial transitions between perceived locations, and MΠ, storing
actually performed or temporal transitions between symbols.
The memories MΣ and MΓ directly correspond to the items
and transitions of a discrete skip list. The model was inspired by
previous work by [110, 111]. (e) During learning, acquisition of
large-scale transitions requires to access locations and symbols
which were perceived in the past to learn the association with
the currently active symbol. Input from M∆, which is co-active
with MΣ during learning, is omitted in the figure for clarity,
and that only the on-center regions of transition encoders of
MΓ are shown for the same reason.

absolute areas in form of Voronoi cells neglect the probabilistic
nature of neural encodings, used to derive the optimal scale
increment of

√
2, it is believed to suffice for demonstration of

proof-of-principle.
Learning look-ahead transitions requires to buffer symbols

temporally. Identification of locations and recruitment of
symbols in MΣ depends on afferents from M∆, similar to the
smallest scale of GCs in MΓ. Without additional information,
a symbol is thus only active in a place field that is expected
to depend in size on the resolution σeigen of the sensor
representation. However, any PC which falls into the on-center
region of a large-scale GC indicates the start of a look-ahead
transition. Similarly, each PC which is active immediately after
the large-scale GC has to be considered a target of a look-ahead
transition. Consequently, a large-scale GC has to associate
with several previously experienced PCs before spiking and
dissociate from prospective PCs to learn look-ahead transitions.
Hence, all symbols of MΣ are buffered in consecutive order to
allow learning, illustrated in Figure 5e. Conclusively, learning
of transitions in MΓ is gated by co-activation of afferents
from M∆ and temporally buffered information from MΣ.
The biological feasibility of buffering as well as co-activation
learning will be discussed further below.

The sensor representation M∆ is not required for retrieval,
only the memories MΣ, MΠ, and MΓ are recursively iterated.
While co-activation of MΣ and M∆ during look-ahead learning
is implemented as a logical and operation, retrieval requires
to toggle this modality to logical or to allow MΣ to drive
MΓ by itself. Recursion is performed until the neuron which
corresponds to the target symbol is activated in MΣ, or
until a maximal number of recursive invocations is reached.
Furthermore, querying the existence of a trajectory performs
retrieval across all scales concurrently. For instance, assume
that a transition between two locations was learned in the
largest scale. Certainly this means that a trajectory is known
which links the two locations on the smallest scale across
several intermediate places. However, these small-scale details
of the trajectory are not necessary to merely determine the
existence of a viable path, or can be retrieved while the animal
is already walking in the general direction of the goal. Thus, a
large scale transition encoder activates all corresponding distal
symbols concurrently to any other symbols that are activated
due to smaller scales of transitions.

C. Simulation results

The deterministic model was evaluated on an S-shaped
trajectory in a square environment, depicted in Figure 6a.
To observe the impact of temporal buffering, two slightly
different versions of the model were examined. In the first
variant, temporal buffering was ignored and random access to
all symbols was granted during learning. For instance, learning
a feasible spatial transition only depended on the spatial vicinity
between locations. The second variant required that previous
locations were in the temporal buffer in a suitable time window.
The S-shaped trajectory was designed such that any effects of
the temporal buffer are recognizable when using at least one
additional transition scale, illustrated in Figure 6a-c.
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Figure 6: Expected behavior and results of the scale-space
model. (a) The S-shaped trajectory which was used during
evaluation. (b + c) The zoom in on one of the corners of the
trajectory shows the difference in behavior between the spatial
and spatio-temporal variant when one additional transition scale
is used. Black dots indicate place field centers, the numerical
value closest to each dot the relative time of perception
with negative values going to the past. In the spatial variant,
transition learning is only gated by spatial vicinity. During the
initial exploration, a transition is thus learned from place cell
at time −3 to 0 (blue arrow). During the second exploration, a
transition from −3 to +1 is learned due to prefetching (orange
arrow). In the spatio-temporal variant, learning is restricted
to items in a suitable temporal buffer. Consequently, only the
transition from the place at −2 to 0 is learned. The hexagonal
Voronoi cells only depict the on-center of transition encoders.
(d) Using multiple scales of grid cells improves the run-time,
measured in number of iterations, exponentially to determine
if a viable path from start to target exists.

Each variant was evaluated after only one trial during which
learning was disabled. Furthermore, each variant was examined
in a second trial with learning enabled during which the
temporal buffer pre-fetched future symbols from MΣ that were
acquired during the first trial. After the second trial, learning
was disabled again and replay of the trajectory was recorded.

Results are depicted in Figure 6d, which shows the number of
recursive iterations required until the target location was found
for increasing numbers of additional scales. The results show
that the number of necessary iterations declines exponentially
with an increased number of scales, thus improving the run-
time of the model. In addition, the impact of temporal buffering
is discernible, i.e. the spatio-temporal model performs slightly
worse than the purely spatial model. However, this is considered
to be an artifact of the simplified model of GCs that was used.
Furthermore, mental travel during the second exploration of the
environment improves the runtime of the model. The reason is
prefetching of future locations in the temporal buffer structure
combined with learning.

IV. A FORMAL THEORY FOR MULTI-TRANSITION SYSTEMS

Spatial navigation can be viewed as a process in which
sequences of symbols are learned and produced. For this
purpose, knowledge about feasible transitions from one symbol
to another is required. Goal-directed navigation is therefore
examined using the following axiomatic system, called Multi-
Transition Theory (MTT), in which spatial locations are
represented by symbols and movement from one location to
another by transitions.

A. Symbols, alphabets, and sequences

Consider an animal which moves through three rooms. The
trajectory of the animal can be described by the sequence
of symbols A,B,C, e.g. each representing one room. The
meaning of a symbol is not pre-determined, for instance the
symbols could also represent the event of perception of each
corresponding room. The entirety of symbols forms an alphabet
and their consecutive ordering a sequence, both of which are
captured in the following definition.

Definition 1 (Alphabet and sequence). An alphabet Σ is a
finite set of symbols. A sequence (or word) is an ordered tuple
of symbols σi ∈ Σ, i.e. (σ0, σ1, . . . ) = w ∈ Σ+, where + is
the Kleene plus operator.

A trajectory of an animal is thus viewed as a sequence, and
moves along several symbols. However, repetition of a single
symbol is disallowed.

Axiom 1 (Non-stationarity). A sequence is non-stationary if
any two successive symbols σi and σi+1 are distinguishable,
i.e. σi 6= σi+1.

This does not limit general capabilities. Two consecutive but
distinct symbols of a sequence can have the same associated
meaning, for instance the perception of a certain room.

The directional ordering of a sequence is expressed using
the arrow notation →. For example, A → B means that the
symbol B causally follows after symbol A. However, time is
not immediately given in the definition and needs to be stated
explicitly. Thus, symbols and transitions can be viewed as
terms of propositional logic. For instance, A→ B means that
if A is true, it follows that B is also true. Thereby they form
a chain of causality. In addition to →, the arrow  exists, e.g.
A  C means that there exists a path from A to C which
bridges n ≥ 0 intermediate symbols. The negations of the
notation are 6→ and 6 .

Axiom 2 (Coherency). Let w = σi, i ∈ {0, . . . , N} be a
sequence of N symbols. w is coherent if and only if σi →
σi+1,∀i ≤ N − 1.

Coherency is required in goal-direction navigation. Consider
an animal which travels from a starting point to a target location.
The animal has to construct a trajectory without any gaps to
reach its destination. Otherwise, it may express undefined
behavior or displacement activity as it does not know how to
proceed to its goal. Without a distinct goal, the animal performs
explorative movement in which novel symbols are acquired.



10

Axiom 3 (Validity). A sequence w is valid or acceptable if it
is both non-stationary and coherent.

Using these notations and axioms, goal-directed navigation
from a start A to a goal C can be expressed as a program
which expands the path A  C into any valid sequence
A → σ1 → · · · → σN−1 → C, if it exists. The next section
will discuss how the expansion can be denoted and performed
for arbitrary symbols.

B. On Universal Multi-Transition Systems

The arrow notation specifies relations between symbols.
Consider the example A → B which contains the transition
from A to B. The transition is a tuple (A,B) which maps one
symbol to another and known, for instance, from Reinforcement
Learning (RL). There it is denoted as a transition function
mapping from a set of states and a set of actions R to the next
state, i.e. τ : Σ×R→ Σ [120]. The notation is now extended
for the purpose of encoding multiple feasible transitions.

Definition 2 (Transition system, set, bundle, and point). A
Multi-Transition System (MTS) M is the pair

M = (P(Σ),Π) (12)

where P(Σ) is the power set of Σ. A set Ω ∈ P(Σ) is called
a configuration of M. All symbols σi ∈ Ω are considered to
be true.

The set Π is called transition set and contains sets πi, called
transition bundles. In turn, a transition bundle πi is a set of
transitions τki : Σ→ Σ, called k-th transition point of πi.

An MTS M can be interpreted as a state machine in which
multiple states can be active simultaneously. Indices will be
dropped if they are clear from context. Figure 7a illustrates
a sequence, transition points, and bundles. The following
additional terminology and notation will be used.

1) A transition τ from A ∈ Σ to B ∈ Σ can be written
(A,B) or (A→ B).

2) τ = (A → B) is defined for A and leads to B, written
A ≺ τ and τ � B, respectively. The notation is transitive
to bundles and sets, i.e. A ≺ π ⇔ ∃τ ∈ π,A ≺ τ , and
π � B ⇔ ∃τ ∈ π, τ � B, respectively.

3) A bundle π forms a tuple (S, T ) with start and target
symbols S = {σ|σ ≺ τ, τ ∈ π} and T = {σ|τ � σ, τ ∈
π}, respectively.

4) If a transition bundle πi is true, then so are all contained
transitions τki ∈ πi.

Transitions form terms which are independent of symbols.
Consider the symbol A and the transition (A→ B), both of
which are propositional terms, in the term A ∧ (A → B). If
A is true, then it can be deduced logically that B is also true,
written A∧(A→ B)⇒ B. Here, ∧ is the logical and operator.
A forms a precondition for the transition (A→ B). As A is
true, the precondition is met and thus also the transition is true.
B is the conclusion of the entire term. Order of evaluation is
not specified during logical deduction. Therefore, sequential
evaluation of transitions is made explicit as follows.

Definition 3 (Transition evaluation). A configuration Ω ∈ P(Σ)
of an MTS M is evaluated according to the functions

FM :Ω,Π 7→ ∪ifM(Ω, πi ∈ Π) (13)
fM :Ω, π 7→ {σl|σk ∈ Ω, σk ≺ π, σl is true in π} . (14)

The union in Equation 13 goes over all transition bundles
contained in Π. Hence, evaluation yields all symbols which
are true given an initial configuration. The function FM(Ω,Π)
allows recursive usage for evaluation until a target symbol is
reached. Consider the following example with four symbols
A,B,C,D, where A is the start and B the target. Hence the
initial configuration is Ω = {A}. Furthermore, the following
transition set, bundles, and points are defined.

Π = {π0 = {τ0
0 , τ

1
0 }, π1 = {τ0

1 , τ
1
1 }} (15)

τ0
0 = (A,B) τ1

0 = (A,D) (16)

τ0
1 = (B,C) τ1

1 = (D,C) (17)

It requires two recursive evaluations, i.e. FM(FM(Ω,Π),Π),
until the target symbol is found. This is similar to the evaluation
of transition functions in RL [120]. However, the set notation
allows the superposition of several symbols at the same time.

C. Encoding capacity of the Universal MTS

The definition of π introduced a bundling trick which
provides several benefits to analyze the computational logic and
storage requirements of an MTS, especially when viewed in
the light of neural encodings. Consider the following thought-
experiment. Suppose that the generation of a bundle (e.g. a
neuron) is energetically expensive, however the addition of a
transition point (e.g. a dendritic spine) to an existing bundle
is comparably cheap. To avoid evolutionary pressure [96], the
goal is thus to minimize the overall cost. Optimizing this cost
corresponds to maximizing the number of transition points
while minimizing the number of bundles. As will be shown
now, it is not possible to merge arbitrary transition points in
one bundle without violating the constraints of MTT.

Theorem 1. Let σ ∈ Σ, M an MTS on the alphabet Σ, Π the
corresponding transition set, and π = (S, T ) a transition
bundle. M generates valid sequences if and only if the
following conditions hold.

1) σk ≺ π =⇒ πk 6� σi.
2) π � σl =⇒ σl 6≺ π.

Proof. 1) From Axiom 1 it follows immediately that any
transition π which is defined for σk and leads to σk violates
the non-stationarity condition. 2) Without loss of generality,
consider the three symbols σ0, σ1, σ2 ∈ Σ and σ0 → σ1 → σ2

but σ0 6→ σ2. This yields the transition points τ0 = (σ0, σ1)
and τ1 = (σ1, σ2). Assume further that τ0 and τ1 are bundled
in π, and that σ0 and π are true. It follows that σ0 ∧ τ0 ⇒ σ1.
However, σ1∧τ1 ⇒ σ2 and thus σ0∧π ⇒ σ2. This contradicts
the assumption and violates the coherency constraint.

Therefore, the sets of symbols S, T for a π = (S, T ) have
to be mutually exclusive, i.e. S ∩ T = ∅.

Definition 4 (Minimality, universality). An MTSM is minimal
if there exists only one πi for any σk, i.e. σk ≺ πi ⇒ σk 6≺ πj
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for any j 6= i. In a universal M, any arbitrary transition
between two symbols σk, σl is possible.

Corollary 1. The input set Si of a transition bundle πi is
singleton for a minimal and universal M.

Proof. σk ≺ πi and πi � σl,∀ l 6= k. According to Theorem 1,
σl 6≺ πi,∀ l 6= k.

Corollary 2. Let Σ be an alphabet of size M , Π a transition set
of N transition bundles πi = {Si, Ti} for a minimal universal
M. When all possible transitions are realized, then M = N .

Proof. Construct the graph G of M in which each transition
is represented by a node, and any symbol by a directed edge.
For example, consider the three symbols σ0, σ1, σ2 which are
connected by the transitions τ0 = (σ0, σ1) and τ1 = (σ1, σ2).
The corresponding graph has only two nodes for τ0 and τ1
which are connected by a single directed edge representing σ1.
The directed graph for a complete universal minimal M in
which all transitions are realized is fully connected. Reducing
any pair of directed edges to a single undirected edge yields
a fully connected undirected graph. According to Theorem 1,
Si∩Ti = ∅ for any πi. Therefore, only those transitions can be
bundled which are not connected by an edge in G. Furthermore,
the number of independent nodes in G is equivalent to the
chromatic number of the graph, i.e. the minimal number of
colors which can be assigned to nodes of a graph, known as
graph-coloring problem [121]. The chromatic number of a fully-
connected graph equals the number of nodes. Conclusively,
M = N .

An example of the reduced graph for a sequence of four
symbols σ1, . . . , σ4 is depicted in Figure 7b. The figure shows
transitions as vertices, and edges correspond to symbols.
Removing the directedness of the graph by fusing two symbols
means that each edge is associated with two symbols.

D. Brief discussion of the Universal MTS with implications
for neural networks

Following Corollary 2, an implementation of a universal
minimalM requires to have as many entities to store transition
bundles as it has symbols. Furthermore, these encoders have
to decorrelate from their target symbols to fulfill Theorem 1.

Consider a neural implementation in which a neuron repre-
sents a transition bundle. To make efficient use of the neuron, it
has to represent multiple transitions and thereby expose several
receptive fields. However, each transition also dictates that the
neuron has to dissociate from target symbols. Combined, each
receptive field of such a transition neuron is suggested to consist
of an on-region in which it associates to the symbol for which it
is defined, and an off-region in which it decorrelates. In addition,
the transition system requires the possibility of representing
a logical and operation, feasible in neural networks [123].
Finally, each neural transition encoder will co-activate with
any symbol for which it is defined during recursive retrieval.

E. Multi-Transition Systems in Euclidean space

The space which is constructed by symbols δi and transitions
τj above is the discrete topological space with the induced

Figure 7: Transition graph examples. (a) A sequence of five
consecutive symbols σ1, . . . , σ2. The transitions τ1, . . . , τ4 can
be bundled into π1 and π2 without violating any constraints.
(b) In a universal transition system, the transition graph is
fully connected. By construction, each edge is associated with
two symbols. (c) In the two dimensional case, the optimal
distribution of symbols is a hexagonal arrangement [122].
(d) The optimal distribution of transition bundles in the two
dimensional case follows the distribution of the symbols.
However, bundles can be repeated periodically in a hexagonal
fashion. Edges in the graphs of (c) and (d) were omitted to
improve clarity.

discrete metric. However, the world in which animals reside
is not discrete and arbitrary jumps between two locations are
infeasible. In particular, the perceived environment corresponds
to a complete metric space, i.e. the Euclidean, from now on
simply called metric space. Hence, an MTS L which encodes
transitions in a metric space has different constraints than a
universal MTS M.

Encoding transitions between locations in a metric space
depends on the detection of two consecutive positions. The
following analysis is based on the assumption that there exists
a continuous signal which depends on and uniquely identifies
each possible location of the animal. In terms of the Euclidean
space M , this corresponds to locations x ∈M . Certainly an
animal does not have access to coordinates. However, other
stimuli are likely to provide the necessary information. For
instance, geometrical information combined with head direction
signals is sufficient to represent singular locations, which was
demonstrated in the BV cell model presented by [18].

According to Definition 1, an alphabet is finite. This can be
understood to correspond to a finite number of neurons which
have to represent locations. However, the alphabet ∆ of spatial
symbols δi has to represent the continuous signals x of the
input space M . This corresponds to the well-known sampling
theorem.

Definition 5 (Spatial symbol, enablement, and assignment).
Let δi ∈ ∆ be spatial symbols according to a sampling process
of a complete metric space D = (M,d). Each δi is centered
at a xi ∈M .

A point p ∈ M enables δi if it is within the support of δi
given by the open ball Bi,s of radius rs, i.e. Bi,s = {p ∈
M |d(xi,p) < rs}.

The point p is assigned to the closest δi, i.e. δi for which
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d(xi,p) is minimal. Given two adjacent symbols δi, δj , then
rw = ||d(xi,xj)||/2, describing a ball Bi,w of radius rw.

The definitions of enablement and assignment can be
interpreted in the following way. The region in which a spatial
symbol is enabled can be understood as its receptive field, and
according to the definition, multiple spatial symbols can have
overlapping receptive fields. In contrast, assignment identifies
the closest symbol, for instance as a result of a winner-take-all
mechanism.

According to the Petersen-Middleton theorem [122], the
ideal sampling strategy for two-dimensional continuous signals
and therefore placement of spatial symbols δi is a hexagonal
arrangement. The sampling process can also be understood as
a solution to the problem of packing spheres with diameter rw
as densely as possible. The sphere packing problem also yields
a hexagonal lattice in the two dimensional case [124, 125].

Assuming an ideal sampling process, the question remains
about the optimal distribution of transition bundles.

Theorem 2. Let D = (M,d) be an Euclidean space. Let
L = (P(∆),Γ) be a minimal transition system on D such that
the countably finite alphabet ∆ corresponds to the densest
optimal covering with respect to rw.

1) The number of transition bundles γi ∈ Γ is constant.
2) The occurrence of any transition bundle γi is periodic.

The theorem is proved by its corresponding graph-coloring
problem which was introduced above.

Proof. The densest arrangement of spatial symbols according
to the Petersen-Middleton theorem is a hexagonal lattice [122].
Furthermore, transitions between symbols are only possible
between adjacent symbols. Consequently, the corresponding
transition graph is not complete, i.e. only neighboring transi-
tions are connected. The chromatic number of the resulting
graph is 3 and the occurrence of colors is periodic.

An example for the two dimensional arrangement of symbols
is depicted in Figure 7c, and one solution of the graph coloring
problem in Figure 7d.

As mentioned above, likely candidates to provide an input
space which yields unique signatures for arbitrary locations
in confined environments are BV and HD cells. However, an
analysis which uses biologically plausible afferents is postponed
to future work.

V. DISCUSSION

A biologically plausible self-organizing model of GCs,
proposed to encode transitions, was presented. Hexagonal grid
fields emerged due to recurrent dynamics and to optimally
encode transitions. Subsequently, a scale-space model for GCs
was presented to remedy the behaviorally problematic runtime
of spatial transition systems during path planning. Finally,
MTT was introduced to mathematically examine the storage
requirements both for episodic as well as spatial transitions.

Learning sequences and transitions in the Hippocampus
was explored previously [126, 127]. However, these studies
ignored spatial information or GCs. Spatially modulated inputs
and association of motor commands and rewards to spatial

transitions were already suggested by [110, 111]. In their model,
places and transitions are stored separately. In addition, their
model contains biologically plausible interactions between the
motor cortex, and was demonstrated in a real-world example
using a robot. Hirel et al. extended the model to incorporate
reinforcement learning for the acquisition of goal-directed
transitions in a biologically plausible manner [112]. However,
these models did not differentiate between spatial and temporal
transition systems. Furthermore, sequences were not defined
rigorously and optimality of transition encoding was not subject
of the studies.

A. On dendritic computation

The presented work used dendritic computation for the
self-organization of GCs. A similar model was suggested
previously by [128]. However, the authors proposed that GCs
perform sampling of a circular input space for the purpose
of localization. Thereby, the cells perform Voronoi clustering,
which yields a hexagonal arrangement of grid fields in the ideal
case. In addition, the self-organizing grid cell model is similar
to the work by [129] and [128] in that it suggests that GCs
of one module properly align to each other due to recurrent
dynamics.

Recent findings suggest that dendritic computation in general
is more elaborate than previously thought. Dendritic spines
were found to express individual structural plasticity[130], as
well as local synaptic plasticity[131, 132, 133]. Furthermore
dendrites were found to be capable to encode multiple sen-
sory stimuli[134]. In combination with the complex intrinsic
organization of the EC[67, 135], it therefore appears likely
that GCs perform multiple distinct computations in, and self-
organization of their dendritic tree akin the proposed multiple
receptive fields for transition encoding.

B. Biological interpretation of MTT

For arbitrary sequences and transitions from one symbol to
another, the mathematical proof shows that as many transition
encoders are required as there are symbols. In Euclidean
metric space, the result differs in that only a finite number of
transition encoders is required given the assumption of unique
spatial input. Widloski et al. recently proposed a model of GC
learning which exhibits similarity with respect to the expected
behavior of the cells [136]. The authors demonstrated that a
spiking neural network converges to a hexagonal arrangement
of responses given spatially unique inputs.

Retrieval of sequences from an MTS requires both symbols
and transition encoders. Neurons which represent transitions
between spatial symbols will thus co-activate with and express
similar place field behavior as the neurons encoding the
symbols. Likely candidates for the storage of symbols and
transitions appear to be PCs of CA1 and CA3. However, it
is unclear if episodic transitions are stored within recurrent
collaterals, plenty of which were found for CA3 [73, 137], or
if there exists a suitable recurrence from CA1 to CA3. Another
possibility is an embedding in the trisynaptic loop, which spans
CA1, CA3, and EC. For the first case, disruption of activity
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within CA1 or CA3 should lead to a decline of performance
in tasks in which temporally accurate sequences are required.

It is expected that the deliberately abstract MTT can be
applied to other domains which require transitions between
symbols.

C. A note on spatially unique input

All three introduced aspects, i.e. MTT, the self-organizing
GC model, as well as the scale-space model, were developed
under the assumption of spatially unique sensory inputs.
Although the models used coordinates, it is proposed that the
BV space forms a suitable and biologically plausible sensory
representation. This is exemplified by the BV model by [18],
who demonstrated that afferents from BV cells are sufficient to
plausibly generate and correctly predict the firing of PCs with
respect to the environment. Consequently, it is assumed that the
coordinates can be replaced by a similar presynaptic sensory
state. In fact, it is expected that coupling GCs and BV cells in
the scale-space model will be able to explain recent findings
in which GCs appeared to be influenced by the geometrical
layout of the environment [138, 139].

D. Remarks on the self-organizing model of grid cells

The self-organizing grid cell model quickly develops cells
with a gridness score above zero for realistic trajectories of
rodents. Furthermore, the dynamics align the orientation of all
participating cells of one grid module. Competitive dynamics
were required to achieve co-orientation of several cells, which is
supported by Couey et al. who found that recurrent connectivity
in the mEC is primarily inhibitory [84].

The model uses an animal’s speed to adapt learning of
spatial transitions. In particular, the rule defined in Equation 10
modulates the learning rate inversely proportional to the running
speed of the animal. Hence, knowledge about the linear speed
of the animal is required, which was recently discovered to
be represented by speed cells in the mEC [140]. The effect is
expected to be realized in either of the two ways. On the one
hand, inhibitory interneurons could suppress the activity of the
currently spiking GCs more strongly the faster the animal runs.
On the other hand, a purely excitatory mechanism could be
based on influencing GCs which sample future sensory states.
Due to the findings of Couey et al. [84], the first mechanism
appears to be more likely.

The presented model is independent of movement direction.
On the contrary, the model depends on the instantaneous percep-
tion of the environment and identification of locations, similar to
other previously proposed self-organizing models [88, 89, 128].
However, it is expected that activity of simulated GCs will
slightly follow the head direction of an animal when the
visual system is modeled accurately. There are two reasons
for this expectation. First, the visual system of rodents is
slightly forward facing, making it more likely that locations
are recognized that are in the viewing direction. Second, one of
the main purposes of the transition system is to plan trajectories
towards goals. It appears to be more relevant to plan towards
where an animal is facing, rather than were it is moving. In
principle, this could explain a recent statistical analysis by [57],

who showed that GCs activity correlates more strongly with
head direction than with movement direction.

The presented self-organizing model is limited due to negli-
gence of temporal dynamics on the synaptic level. For instance,
the receptive fields with on-center and off-surround dynamics
are expected to be a result of temporal interactions between
presynaptic afferents in combination with an asymmetric STDP
learning rule. Furthermore, the model was only shown for three
cells which are likely to organize themselves hexagonally and
evenly distribute across the input. However, stochastic input in
combination with a suitable STDP rule is expected to generate
hexagonal arrangements and GCs with partially overlapping
receptive fields. Finally, the programmatic global and local
winner-take-all mechanisms are expected to also be remedied
by a detailed model with accurate temporal dynamics.

E. Interpretation of the scale-space model and related areas

The scale-space structure, used to improve run-times sig-
nificantly, can be interpreted in the following way. The finest
resolution of the spatial transition system reacts to transitions
on the perceivable level, represented by presynaptic activity.
In other words, detection of spatial locations during the
dendritic computations corresponds to an identity function. The
target region of any transition which is detected on this scale
corresponds to any location with which an animal can interact
directly. Larger scales allow the animal to asses viability of
movement towards locations which are further apart. To allow
comparison of such displaced locations, the corresponding
sensory representations are low-pass filtered in discrete steps.
In turn, these comparisons allow to perform approximate look-
ahead. Look-ahead was already proposed to be performed in the
entorhinal-hippocampal loop by Kubie et al. [141]. However,
the authors did not address optimality of the encoding.

During learning, the simplified scale-space model requires
co-activation of both spatially modulated afferents, as well as
already acquired spatial symbols. The reason is that on the one
hand, GCs are assumed to detect spatial transitions directly on
the input space due to dendritic computations. On the other
hand, these transitions must be related to already learned PCs.
However, sensory information may not be available during
retrieval, especially mental travel. Hence, retrieval operates
only due to activated PCs, which requires to drive GC activity
only on behalf of PCs. It is therefore expected that these
operations are implemented hetero-synaptically in such a way
that there is a clear distinction between learning and retrieval
in the mEC.

The described recursive technique to construct multi-scale
look-ahead transition encoders generates a Gaussian pyramid,
or scale-space, well known in the computer vision and signal
processing communities [142, 143, 144]. Among others, scale-
spaces were used to describe biologically plausible retinal
and visuocortical receptive fields [145, 146, 147], and it was
proved that a scale increment of

√
2 is optimal for Gaussian

functions [144]. In image processing, application of a Gaussian
pyramid corresponds to consecutively smoothing an image, i.e.
an input gets low-pass filtered by which fine-scale information
is removed. Finally, this allows to detect features in the
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input across several scales [148, 149], thereby making feature
detection scale invariant. The same principle is used in the
scale-space model for GCs to search for feasible transitions on
larger distances. Essentially, comparison of two distal locations
for look-ahead requires to ignore fine structures.

F. Temporal buffering and a relation to Theta phase precession

Lindeberg points out that access to temporally buffered in-
formation is necessary to construct scale-space structures [150].
Certainly, this was also required for the construction of the
scale-space for transition look-ahead. The temporal buffer was
required to bind large-scale transition encoders to consecutive
places across long distances. Hence, GCs of larger scales
require excitation not only from the current sensory perception,
but also from PCs which encode past and future locations on
a linear track. This observation is supported by findings which
report that excitatory drive from the Hippocampus is required
for grid cells [54]. The observation predicts that the temporal
integration window of GCs from larger scales needs to be
increased when compared to cells from smaller scales. Or, that
some other mechanism exists which prevents GCs of larger
scales from firing before the necessary afferents from PCs
were accumulated. Most importantly, it requires a biologically
plausible mechanism to buffer data temporally.

The most likely candidate for a temporal buffer is Theta
phase precession [34, 35]. When an animal is running, several
PCs which correspond to past locations, the PCs of the current
location, as well as PCs which encode future locations spike
in order of their traversal within one Theta cycle. The reported
maximal compression ratio is of the order of 10 : 1 [33],
i.e. at most ten consecutive places are represented within one
theta cycle. One iteration of the proposed transition system
requires at least two neural memories. Given approximate
numbers of neural activation and axonal delay of 5− 10 ms,
one iteration requires 15 ms on average. In concordance with
the reported compression ratio, at most 10 iterations of the
transition system fit into one Theta cycle which oscillates
between 6–10 Hz [151]. Conclusively, Theta is proposed
to form a main-loop with nested sub-loops that iterate the
transition system. Without other mechanisms, it is estimated
that on average 5-7 stable grid scales can be formed on top of
this temporal buffer, depending on the frequency of Theta. It is
expected that temporal compression during SPW-R contributes
to the formation of grid scales, which may lead to larger scales.

G. Links to computer science and robotics

Skip lists [114], used as inspiration for the look-ahead in the
scale-space model, operate on one-dimensional lists of data.
Several related data structures which form hierarchies for two
dimensional data are known in computer science. For instance,
quad- and octrees subdivide dimensions of an input space to
accelerate queries exponentially [152, 153]. On topological data
without global coordinates, contraction hierarchies were shown
to significantly improve search time [154, 155]. The scale-
space model of GCs demonstrates how these data structures
can be extended to probabilistic data.

An MTS creates a topological representation of perceived
locations. Dabaghian et al. already suggested that the rodent
Hippocampus forms a topological map [25, 156]. However,
the novel scale-space model not only links immediately neigh-
boring locations but allows to extract approximate relations
between remote places. Retrieval of a path according to the
scale-space model corresponds to the well known Dijkstra’s
algorithm [157], or more specifically to A* [158]. The latter
algorithm was developed for robotic navigation and is an
extension of the first. A* uses heuristic information to accelerate
search of viable trajectories, similarly to look-ahead transitions
in the scale-space model. The benefit of a topological map,
formed on spatially modulated sensor data and augmented with
look-ahead, is the avoidance of a global coordinate system. It
is thus expected to be useful in indoor robotics systems without
access to global coordinates.

H. Future work

Several simplifications and abstractions were necessary
to reduce the complexity of the introduced models. An
implementation which is currently in development will use a
spiking neural network to address the issue of missing temporal
dynamics, absent in the self-organizing grid cell model. Early
results show that on-center and off-surround fields for dendritic
computation form as expected, and that several cells exhibit
partially overlapping grid-like fields.

Furthermore, an extended scale-space transition model is in
development which includes RL as a mechanism for trajectory
selection. Currently, the scale-space transition model lacks a
quality measure to narrow down multiple possible trajectories
to a singular best fit and only reports the existence of any
viable path. It is expected that the previous work by [112] can
be adapted and reproduced. Subsequently, the RL mechanism
will be combined with the spiking neuron model. It is expected
that the observation of pre-play of trajectories, reported in [31],
can be reproduced in the combined model.

VI. CONCLUSION

This work proposed an entirely novel function of grid cells,
i.e. optimal encoding of transitions across multiple scales in
form of a multi-transition system. First a biologically plausible
model of grid cells in a competitive network was developed.
Then, the spatial multi-transition system was extended into a
scale-space model for transition encoding to solve behaviorally
problematic run-times. Given the assumption of probabilistic
detection of locations, it was shown that the optimal scale
increment for transition encoding in the scale-space model
is
√

2. Finally, Multi-Transition Theory was introduced to
formally analyze transition systems. It was shown that a
hexagonal arrangement of transition encoders minimizes the
number of required encoders in two-dimensional Euclidean
space. The results give rise to future developments. Extended
models with spiking dynamics are in development to address
biologically plausible reinforcement learning for trajectory
selection and input space representation. Furthermore, the
results are currently used for the development of novel mobile
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swarm-robotic systems which operate on and communicate with
probabilistic data similar to the principles of neural systems.

Conclusively, this work addressed spatial navigation on all
three levels of analysis suggested by David Marr [159]. 1)
The purpose of the computation, which is twofold. On the one
hand an animal requires to record locations. On the other hand,
the recorded locations have to be recalled in such a way that
trajectory planning can be achieved in a behaviorally acceptable
run-time. 2) The algorithmic description and especially the
scale-space model were a result of the computational purpose
and its behavioral relevance. 3) A biologically plausible
implementation for GCs as well as the scale-space multi-
transition system were demonstrated.
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[51] J. A. Pérez-Escobar, O. Kornienko, P. Latuske, L. Kohler,
and K. Allen, “Visual landmarks sharpen grid cell metric
and confer context specificity to neurons of the medial
entorhinal cortex,” eLife, vol. 5, p. e16937, jul 2016.

[52] D. Derdikman, J. R. Whitlock, A. Tsao, M. Fyhn, T. Haft-
ing, M.-B. Moser, and E. I. Moser, “Fragmentation of
grid cell maps in a multicompartment environment,” Nat
Neurosci, vol. 12, pp. 1325–1332, Oct 2009.

[53] T. Stensola, H. Stensola, M.-B. Moser, and E. I. Moser,
“Shearing-induced asymmetry in entorhinal grid cells,”
Nature, vol. 518, pp. 207–212, Feb 2015. Article.

[54] T. Bonnevie, B. Dunn, M. Fyhn, T. Hafting, D. Derdik-
man, J. L. Kubie, Y. Roudi, E. I. Moser, and M.-B.
Moser, “Grid cells require excitatory drive from the
hippocampus,” Nat Neurosci, vol. 16, pp. 309–317, Mar
2013.

[55] C. Schmidt-Hieber and M. Hausser, “How to build a
grid cell,” Philos. Trans. R. Soc. Lond., B, Biol. Sci.,
vol. 369, p. 20120520, Feb 2014.

[56] G. Chen, D. Manson, F. Cacucci, and T. J. Wills,
“Absence of visual input results in the disruption of
grid cell firing in the mouse,” Current Biology, vol. 26,
no. 17, pp. 2335 – 2342, 2016.

[57] F. Raudies, M. P. Brandon, G. W. Chapman, and M. E.
Hasselmo, “Head direction is coded more strongly
than movement direction in a population of entorhinal



17

neurons,” Brain Research, vol. 1621, pp. 355 – 367,
2015. Brain and Memory: Old Arguments and New
Perspectives.

[58] R. Morris, “Developments of a water-maze procedure
for studying spatial learning in the rat,” J. Neurosci.
Methods, vol. 11, pp. 47–60, May 1984.

[59] E. T. Rolls, “Functions of the primate hippocampus in
spatial and nonspatial memory,” Hippocampus, vol. 1,
no. 3, pp. 258–261, 1991.

[60] W. B. Scoville and B. Milner, “Loss of recent mem-
ory after bilateral hippocampal lesions,” J Neurol
Neurosurg Psychiatry, vol. 20, pp. 11–21, Feb 1957.
13406589[pmid].

[61] D. Marr, “Simple memory: a theory for archicortex,”
Philos. Trans. R. Soc. Lond., B, Biol. Sci., vol. 262,
pp. 23–81, Jul 1971.

[62] E. Tulving, “Episodic and semantic memory 1,” Orga-
nization of Memory. London: Academic, vol. 381, no. 4,
pp. 382–404, 1972.

[63] L. E. Jarrard, “On the role of the hippocampus in learning
and memory in the rat,” Behav. Neural Biol., vol. 60,
pp. 9–26, Jul 1993.

[64] N. M. van Strien, N. L. Cappaert, and M. P. Witter,
“The anatomy of memory: an interactive overview of
the parahippocampal-hippocampal network,” Nat. Rev.
Neurosci., vol. 10, pp. 272–282, Apr 2009.

[65] S. Cheng, “The crisp theory of hippocampal function in
episodic memory,” Frontiers in Neural Circuits, vol. 7,
p. 88, 2013.

[66] M. P. Witter, “Intrinsic and extrinsic wiring of CA3:
indications for connectional heterogeneity,” Learn. Mem.,
vol. 14, pp. 705–713, Nov 2007.

[67] C. B. Canto, F. G. Wouterlood, and M. P. Witter, “What
does the anatomical organization of the entorhinal cortex
tell us?,” Neural Plasticity, vol. 2008, pp. 1–18, 2008.

[68] E. Fuchs, A. Neitz, R. Pinna, S. Melzer, A. Caputi,
and H. Monyer, “Local and distant input controlling
excitation in layer ii of the medial entorhinal cortex,”
Neuron, vol. 89, pp. 194–208, 12 2015.

[69] B. L. McNaughton and R. G. M. Morris, “Hippocampal
synaptic enhancement and information storage within a
distributed memory system,” Trends in Neurosciences,
vol. 10, pp. 408–415, 2017/03/06 1987.

[70] A. Treves and E. T. Rolls, “Computational analysis of
the role of the hippocampus in memory,” Hippocampus,
vol. 4, pp. 374–391, Jun 1994.
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